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Abstract

A simulation method based on the discrete element
method (DEM) has been developed for studying the
particle packing dynamics and for optimizing the
colloidal forming processes. The DEM needs explicit
functions for the computation. The explicit van der
Waals interaction functions derived by Hamaker
between two surfaces (or spheres) become in®nite if
the surface distance approach zero. This is a numer-
ical singularity problem due to the continuum
assumption in the Hamaker theory and is incon-
sistent with the physical reality. The analytical solu-
tions obtained by using the modern Lifshitz's theory
and solution by incorporating the non-continuum
theories (e.g. Lennard±Jones potential) are too
complex to be applied for the DEM process simula-
tion. During consolidation processes, the colloids
move from the long-range interaction region into the
solid-body contact with other colloids or with the
boundaries. The long-range interaction were descri-
bed by the DLVO theory. Meanwhile, the Johnson±
Kendall±Roberts (JKR) theory took the adhesion
energy (or surface energy) into account for describ-
ing the elastic solid-body contact. Both the Derja-
guin approximation and the JKR theory based on the
continuum assumption have been successfully applied
to solve the transition (or numerical singularity)
problem from the DLVO long-range interaction to
the elastic JKR solid-body contact for the DEM
simulation. Solving the transition/singularity pro-
blem is the ®rst step for simulating the consolidation
processes. In this numerical model, the adhesion
energy, the elastic deformation, the hard sphere dia-
meter and the compact Stern layer were considered.
The shortest surface distance (without external

load) is calculated at a distance where the JKR
adhesion force is equal to the DLVO interaction
force. The interactions between two spheres, between
sphere and surface plane and between two di�erent
materials were shown. The DEM simulation results
show that the particle-pile-up is an essential
mechanism for the particles to get into solid-body
contact in stabilized suspensions. # 1998 Elsevier
Science Limited. All rights reserved

1 Introduction

Powder agglomeration has been recognized as the
major factor limiting the strength and Weibull
modulus of ceramics made by sintering. Ceramic
green bodies fabricated by colloidal processing
techniques achieve better mechanical properties1

because the agglomeration process in suspension
can be prevented by suitable stabilization. Ceramic
particles are subjected to many varying interactions
resulting from changing surroundings during col-
loidal forming process. These interactions, like
particle±particle and particle±boundary interac-
tions, frictional drag, gravitation force, hydrostatic
lift, hydrodynamic lift, rotational resistance, etc.,
have been taken into account for the numerical
simulation based on the discrete element method
(DEM).2 In the stabilized suspensions, the colloids
disperse homogeneously in the solution because of
their electrostatic double-layer repulsions. These
colloids will approach each other and form the
sediment in a forming process. This means that the
colloids will move from the long-range interaction
region into the solid-body contact with other col-
loids or with the boundaries. Therefore, both long-
range interactions and particle contact have to be
considered for simulating the colloidal forming
processes.
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According to the DLVO theory, the long-range
interactions include the van der Waals attraction
and the electrostatic double-layer repulsion and the
total interaction energy Vtot between any two col-
loidal surfaces is controlled by the van der Waals
energy Vvdw and by the electrostatic repulsive
energy Vel,

3±5 i.e.

Vtot � Vvdw � Vel: �1�

And the DLVO potential interaction force Fp. can
be derived through di�erentiation of the potential
interaction energy

~Fp � ÿ @Vtot

@h
� ~Fvdw � ~Fel; �2�

where h is the surface distance.
Numerical simulation based on the DEM needs

explicit functions for the computation. The van der
Waals and electrostatic double layer interaction
functions derived from the Hamaker theory and
from the electrostatic Poisson±Boltzmann equation
(see Section 2), respectively, have been successfully
implemented into the DEM simulation program
and have been used to study the particle packing
behavior during colloidal forming processes.6±8

However, the DLVO theory has a restriction. It
cannot describe correctly the interactions between
colloidal surfaces at a very short distance (gen-
erally if h < 5 nm), if short-range interactions, e.g.
hydration, steric interaction etc., exist.9,10 Even for
the case that only the long-range interactions exist,
the explicit van der Waals interaction functions,
according to the Hamaker theory, show numerical
singularity when h! 0 [see eqns (3) and (4)]. This
is due to the poor continuum assumption of the
constituent molecules as point particles and the
application of the method of pairwise summation
of interaction in the Hamaker theory.11,12 Fur-
thermore, the explicit Vvdw interaction functions,
according to the modern dispersion theory of Lift-
shitz, need much mathematical e�ort to be solved11

and show also divergence between two dielectric
surfaces at zero separation.12 Under consideration
of the e�ect of the ®nite size of the constituent
molecules on the dielectric response of the system,
the divergence di�culties of Lifshitz's theory at
small distances can be removed. Nevertheless, the
mathematical complexity remains tremendous and
is not practicable for the DEM simulation.
Another solution by incorporating the non-con-
tinuum theories, e.g. Lennard±Jones molecular
potential interaction, brings the simulation into a
more complex level of the molecular dynamics.
This will make the process simulation impossible

for the applications. Furthermore, the parameters
for the calculation of the molecular or atomic
interaction in an aqueous solution are unknown.
Meanwhile they are di�cult to determine.
Consequently, the singularity problem of the
explicit functions derived from Hamaker theory
has to be numerically solved by using the
continuum assumptions, before the DEM method
can be used for simulating the long-range
interactions.
While the applied van der Waals interaction

functions or forces become in®nite if h! 0 [see
eqns (3) and (4)], the electrostatic repulsion will
reach a ®nite value [see eqns (5) and (6)]. This is
inconsistent with the physical reality. If no external
forces act on the system, the particles pair would
come into the primary energy minimum under the
van der Waals attraction, but could not get closer
to each other. This primary energy minimum cor-
responds to a shortest reachable surface distance
which is controlled by the surface morphology and
the atomic short-range repulsion.3,17 The long-
range interaction can be described by the DLVO
theory. Independent of the DLVO theory, the
Johnson±Kendall±Roberts (JKR) theory takes the
adhesion energy (or surface energy) into account
for describing the elastic solid-body contact.17±20

The DLVO theory and the JKR theory are two
di�erent theories. So far as known, no physical
connections between them were formulated for
solving the transition problem from the DLVO
long-range interaction to the JKR solid-body con-
tact. In this work, the transition problem will be
modeled and the physical connections between
them will be mathematically formulated. The
derived mathematical formulations for solving the
transition problem o�er at the same time a physi-
cally meaningful solution for the numerical singu-
larity problem by using the explicit van der Waals
attraction functions based on the Hamaker theory.
They are also the fundamentals for simulating the
consolidation processes by using the DEM. This
paper emphasizes the mathematical modelling and
its numerical realization of the singularity problem
by using the explicit interaction functions. As exam-
ple, the interaction transition phenomena during the
centrifuging processes of ZrO2/Al2O3 suspensions
were simulated and shown in this paper.

2 Explicit Long-Range Potential Interaction
Functions

The van der Waals interaction energy Vvdw

between two spheres with radii r1, and r2 at surface
distances of h has been derived by Hamaker and
has the following form:4,5,11



Vvdw �ÿ AH

6

�
2r1r2

h2 � 2h r1 � r2� �
� 2r1r2
h2 � 2h r1 � r2� � � 4r1r2

� ln
h2 � 2h r1 � r2� �

h2 � 2h r1 � r2� � � 4r1r2

� �� �3�

where AH is the Hamaker constant. The case
of a sphere of radius r at distance h from a
planar half-space (or plane) is obtained from eqn
(3) by setting r1 � r and taking the limit as
r2 !1. We obtain:

Vvdw � ÿAr
H

6h
1� h

2r� h
� h

r
ln

h

2r� h

� �� �
�4�

According to the Gouy±Chapmann model of dif-
fuse layer and under the application of the electro-
static Poisson±Boltzmann equation, the interaction
energy Vel between two spheres with radii r1 and r2
and Zeta potentials  d1 � �1� � and  d2 � �2� � at
surface distances of h is given by the following
equation:4,5,13,14

Vel �64�"r"o
RT

zF

� �2
r1r2

r1 � r2

� tanh
zF d1

4RT

� �
tanh

zF d2

4RT

� �� �
eÿ�h;

�5�

with

� �
������������������
�iz

2
i ciF

2

"r"oRT

s
� �6�

Here
AH is the Hamaker constant;
� is the Debye±HuÈ ckel parameter;
RT is the thermal energy;
F is the Faraday constant;
z is the valency of the electrolyte;
c is the concentration of electro-

lyte in moles;
"r is the relative dielectric constant

of the medium;
and "o is the permittivity of free space.

For sphere and planar geometry, Ives and Gre-
gory15,16 give the expression:

Vel �9�24� 10ÿ11 tanh
zF d1

4RT

� �
tanh

zF d2

4RT

� �
� r ln 1� eÿ�h

ÿ �
:

The pair equations, eqns (3) and (5) or eqns (4) and
(7), build up the total DLVO long-range interac-
tion potentials between spheres and between
sphere and plane and have been implemented
into the DEM simulation program for analyzing
stability of colloidal suspensions. They show a
numerical singularity at zero separation (or solid-
body contact), which will be numerically solved by
using the following JKR theory and Derjaguin
approximation.

3 Adhesion and Elastic Solid-Body Contact

For most ceramic powders with particle sizes of
d < 1 �m, the adhesion e�ects resulted from
their high active surfaces have to be considered
in the powder processing and have to be taken into
account in the modelling. Modern theories of the
adhesion mechanics of two elastic contacting sur-
faces are based on the JKR theory.9,17 In the JKR
theory, two spheres will ¯atten when in contact
(see Fig. 1). The contact area will increase
under an external load or force F. However, a
®nite contact area remains even if the external
force disappears. Consequently, a pull-o� force
will be needed for separating two particles in
contact. With the radii r1, and r2, Poisson's ratios
�1, and �2, Young's moduli E1 and E2, elastic
constants

kel � 1ÿ �21
�E1

and ke2 � 1ÿ �22
�E2

;

r� � r1r2
r1 � r2

; k�e �
4

3� ke1 � ke2� �

and the adhesion work Wad, the contact radius a at
mechanical equilibrium is given by

a3 � r�

k�e

�
F� 3�r�Wad

�
��������������������������������������������������
6�r�WadF� 3�r�Wad� �2

q � �8�

Fig. 1. Reversible contact-radius versus load curve of the
nonadhesive (Hertzian) contact and adhesive (JKR) contact

between two elastic spheres.(7)



For reversible adhesion, the adhesion work is
related to the surface and interfacial energies [see
eqn (15)].
Without taking the surface energy into account,

i.e. Wad � 0, eqn (8) reverts to the simple Hertz
equation17,18

a3 � r�F
k�e
� �9�

At zero applied load, the contact radius ao, is ®nite
and given by

a3o �
6�Wad r�� �2

k�e
� �10�

Fig. 1 shows the di�erences of contact-radius ver-
sus load curve between the nonadhesive (Hertzian)
contact and adhesive (JKR) contact under rever-
sible thermodynamic conditions.

4 Derjaguin Approximation/Interaction Energy
and Force

Generally, interaction energies rather than the for-
ces experienced by molecules and particles have
been dealt with in the literature. This is because
most experimental data on molecular interactions
are readily understood in terms of interaction
energies. However, the forces between macroscopic
bodies are often of greater interest, especially in
our case for the DEM simulation, and are easier to
measure than their interaction energies. In order to
consider the adhesion e�ect in the DEM simula-
tion, the adhesion energy Wad in the eqn (8) has to
be expressed in terms of interaction forces. Hereby,
the Derjaguin approximation has been applied.
At very short surface distance h, i.e. r1 and r2 �

h, the potential interaction force F h� � between two
spheres can be expressed by the so-called Derjaguin
approximation:3,19

F h� �sphere� 2�
r1r2

r1 � r2
V h� �plane; �11�

where V h� �plane is the interaction energy per unit
area of two planes at a surface distance h. Equation
(11) is applicable to any type of force law, whether
attractive, repulsive, or oscillatory, so long as the
interaction range and the separation h is much less
than the radii of the spheres.
If one sphere is very large, i.e. r2 � r1, the

Derjaguin approximation corresponds to the limit-
ing case of a sphere near a plane surface:

F h� �sphere� 2�rV h� �plane �12�

In the case of two rigid (incompressible) spheres in
contact (h � �hs), the interaction force or the
adhesion force Fad can be expressed by the adhe-
sion work W132 if the interaction energy is regarded
to be equal to the adhesion work, i.e.
V �hs� � �W132.

3 Hereby, �hs&0.3±0.6 nm and is the
hard spherical diameter of an atom or a molecule.
For two spheres,

Fad � 2�
r1r2

r1 � r2
W132 �13�

and for sphere/plane,

Fad � 2�rW132 �14�

can be applied. Equations (13) and (14) are a direct
consequence of the Derjaguin approximation. W132

is the adhesion work and results from a contact
process between two surfaces with material types 1
and 2 in a medium 3. In the case of reversible con-
tact process, W132 can be determined by the fol-
lowing equation,4,11

W132 � 12 ÿ 13 � 23� � �15�

if the interfacial energies (13; 23 and 12) are
known.

5 Application of Johnson±Kendall±Roberts (JKR)
Theory

Equations (13) and (14) are valid for the rigid
incompressible solid bodies. Real particles, how-
ever, are never completely rigid. They deform elas-
tically if they come into contact under the in¯uence
of the attractive intersurface forces. These attrac-
tive forces can pull two spheres together and give
rise to a ®nite contact radius ao even under zero
external load [see eqn (10)]. According to the JKR
theory,17 the nonlinear contact laws of Hertz18 and
of von Mindlin and Deresiewicz20 have to be
modi®ed because of the intersurface adhesion.
Another important result of the JKR theory pre-
dicts that on pulling two spheres from adhesive
contact the contact radius decreases gradually from
ao to 0.63ao at which point the spheres sponta-
neously separate. The predicted adhesion force, or
pull-o� force, is 75% of that given by eqn (11) for
undeformable rigid spheres, and can be shown as
following: for two spheres,



F jkr
ad �

3

2
�

r1r2
r1 � r2

� �
W132 �16�

and for sphere/plane,

F jkr
ad �

3

2
�rW132 �17�

F jkr
ad is independent of the original area of contact

ao and the elastic modulus of the spheres and can
be regarded as the maximal attractive force
between two elastic solid bodies without external
load (see Fig. 1). This means that F jkr

ad can be used
as the lower limit of the total potential interaction
force Fp in eqn (2). This lower force limit F jkr

ad will
not only determined by the van der Waals attrac-
tion part (Fvdw) but also by the electrostatic repul-
sion part (Fel), because the compact Stern or
adsorbed layer changes the double-layer structure
as well as the surface morphology. The change of
surface morphology induces certainly the change of
the interfacial energies and the change of adhesion
work if the colloidal surfaces come into contact
[see eqn (15)].
According to the relation F jkr

ad �st� � � Fp h� �, a
shortest surface distanced (without external load)
�st can be achieved, which is dependent of inter-
facial energies of contacting materials in liquid
medium, form and size of the solid bodies [see eqns
(2), (14) and (15)]. In the case of ceramic suspen-
sions with electrolyte, this shortest intersurface
distance will be determined mainly by the thickness
of the compact Stern layer and will be much larger
than the hard sphere diameter �hs for the case of
solid bodies in vacuum.
The di�culties in the calculation of F jkr

ad are due
to the determination of adhesion work W132.
According to eqn (15), W132 is determined by the
interfacial energies 13; 23 and 12. In the case of
solid bodies in suspensions,

W1L2 � L12 ÿ 1L � 2L� � �18�

where the index L means liquid medium. For the
same material type,

W1L1 � L11 ÿ 21L; �19�

or

WSLS � LSS ÿ 2SL; �20�

where the index S means solid. The direct measure-
ments of 1L; 2L; SL; 

L
12; 

L
11; etc., in electrolyte

suspensions are very di�cult. The values of L12 and
L11 in liquid medium are di�erent from the values
of V12 and V11 in vacuum (V11 � 0 in vacuum),
because the surface-morphological change resulted
from the surface-chemical and/or -physical reac-
tions with the liquid medium will not be completely
eliminated through the solid-body contact. There-
fore, the interaction forces are measured directly,
and after that, F jkr

ad are determined.3,9,10,21±24 By
using eqns (16) and (17), the adhesion work is cal-
culated. And then by using eqn (18), the interfacial
energies are obtained.3,9,17,24

6 Numerical Implementation and Physical
Interpretation

According to the JKR theory [eqns (16) and (17)]
and the formulation of the adhesion work in a
contact process [eqns (18)±(20)], the JKR adhesion
forces between two elastic solid bodies in liquid
medium for the following cases can be derived and
expressed through the interfacial energies:

1. Spheres with di�erent materials and radii

F jkr
ad �

3

2
�

r1r2
r1 � r2

� �
� W1L2

Hereby;W1L2 � L12 ÿ 1L ÿ 2L
ÿ � �21�

2. Spheres with same material but di�erent
radii

F jkr
ad �

3

2
�

r1r2
r1 � r2

� �
� W1L1

Hereby;W1L1 � L11 ÿ 21L
ÿ � �22�

3. Identical spheres

F jkr
ad �

3

4
�r�W1L1

�Hereby;W1L1 � L11 ÿ 21L
� �23�

4. Sphere on plane with di�erent material

F jkr
ad �

3

2
�r�W1L2

Hereby;W1L2 � L12 ÿ 1L ÿ 2L
ÿ � �24�

Using the above-mentioned equations, the JKR
adhesion forces F jkr

ad can be calculated by the
known adhesion work W or interfacial energies .
Through the application of the relation

Fp �st� � � F jkr
ad �25�



and Fp from eqn (2), �st will be achieved. This
lower limit of the potential forces F jkr

ad is assumed
to remain constant over the distance region for
0 < h < �st. This assumption results to a linear
potential function with a gradient of m � ÿF jkr

ad .
The potential at a surface distance h and inside this
region can then be calculated by the following
equation (see Fig. 2):

V h� � � Vst � F jkr
ad �st ÿ h� �: �26�

According to the Gouy±Chapman±Stern±Grahame
model, such a linear dependence is a possible
potential distribution inside the compact Stern
layer between ceramic surfaces and aqueous elec-
trolyte solution.25,26 At a surface distance h < �st,
the adhesion mechanics are valid (see Section 3).
This distance �st is determined by the surface
morphologies (or the adhesion work) of contacting
bodies, corresponds to the thickness of Stern layer,
and will not be overcome without external load.
Figure 3 shows the connections between the

DLVO potential interaction, the JKR adhesion
and the solid-body contact of two elastic spheres in
an electrolyte suspension. In Fig. 3(a), the de®ned
elastic contact radius ao [see eqn (10)], the shortest
surface distance without external load �st [see eqn
(25)] and the relative displacement of both sphe-
rical centers �� are shown. �st and ao result merely
from the JKR adhesion force (F jkr

ad ) or the adhesion
work (W) without external load. This ®ctitious
overlap of both spheres �� depends on the ¯atten-
ing of both spheres. This ¯attening can be given
rise to adhesion and/or external load. In Fig. 3(b),
the potential and force curves versus the surface

distance h are shown. Hereby, Fp is the negative
di�erentiation of Vtot at h [see eqn (2)], which is
also valid in the distance region of h < �st. Figure 4
shows the physical connections between the van
der Waals attraction, the JKR adhesion and the
solid-body contact between a sphere and a plane
wall in an electrolyte suspension. In this case, no
electrostatic double layer on the plane wall is
assumed.

Fig. 2. Calculation of the potential function inside the dis-
tance region of h < �st.

Fig. 3. Schematic presentation of the physical connections
between the DLVO potential interaction, the JKR adhesion
and the solid-body contact of two elastic spheres in an elec-

trolyte suspension.

Fig. 4. Schematic presentation of the physical connections
between the van der Waals attraction, the JKR adhesion and
the solid-body contact between a sphere and a plane wall in an
electrolyte suspension. No electrostatic double layer on the

plane wall is assumed.



7 DEM Simulation

The above-mentioned formulations, especially eqns
(1)±(10) and eqns (21)±(25), have been imple-
mented into the simulation program DemCop
based on the DEM. The program name DemCop is
the abbreviation for `Discrete Element Modelling
of Colloidal Powder Processing' and was devel-
oped recently.2,6±8 Besides the above-described
DLVO long-range interactions (Vvdw and Vel),
adhesion, elastic solid-body contacts JKR theory,
etc., the medium in¯uences, e.g. frictional drag,
rotational resistance, hydrodynamic lift, gravita-
tion force and hydrostatic lift were taken into
account for simulation.8 Meanwhile, it was found
that the Brownian force is important only for par-
ticles with diameter less than 100 nm.8 Therefore,
the Brownian force was omitted in the following
simulations. This DEM simulation method regards
each particle as an individual element. The
response of each element to mechanical and elec-
trical impact from its surroundings can be
described by the summation of all interactions,
e.g. particle±particle, particle±medium, particle±
boundary, and particle±external force ®eld interac-
tion. Thus, this method can be used to study the
particle packing dynamics during colloidal forming
processes. There are not only the fundamental
questions concerning materials science like de¯oc-
culation, agglomeration, pore and chain forma-
tion, phase/size separation, defect formation, etc.
can be analysed, but also the knowledge for
improving the ceramic forming techniques using
colloidal suspensions (also multiphase) can be
achieved.
In order to show the transition e�ects from the

long-range potential interaction to the solid-body
contact in the consolidation processes, two-phase
suspensions made of 200 Al2O3 and 200 ZrO2 par-
ticles (tri-modal, d=0.55, 0.45 and 0.35�m) in a
square box of 25.47�12.74�m are centrifuged
under a centrifugal acceleration of 3000g to the
right and the gravitation g downwards (see Fig. 6).
This corresponds to an area density of �A � 20%.
Hereby, the particles and the interaction models
are three-dimensional, but the particle movement is
restricted on a two-dimensional plane. The den-
sities are �Al2O3

=3.8 g cmÿ3 und �ZrO2
=5.8 g cmÿ3.

The Zeta potential curves versus pH values of
Al2O3 (A) and ZrO2 (Z) have almost the same
dependence, where the Al2O3 curve lies with a
small amount higher than the ZrO2 curve.27

Therefore, �Al2O3=50mV and �ZrO2=40mV are
assumed for the stabilized two-phase suspensions.
The Hamaker constants of Al2O3±Al2O3 (A±A)
and ZrO2±ZrO2 (Z±Z) are assumed to be AH

(A±A)=5.2�10ÿ20 J and AH (Z±Z) 8.8�10ÿ20 J,

respectively.28 The Hamaker constant between
Al2O3 and ZrO2 is unknown and is assumed to
have a smaller value of AH AÿZ� � � 2�0� 10ÿ20 J,
so that the di�erent phases will have a smaller
attractive force. Likewise, the adhesion work
between Al2O3 and ZrO2 is assumed to have a
smaller value than Al2O3±Al2O3 and ZrO2±ZrO2,
namely Wad(AÿZ)=ÿ1mJ mÿ2 and Wad (AÿA)=
Wad(ZÿZ)=ÿ3mJ mÿ2. The suspensions are
assumed to have a lower ionic strength with a
Debye±HuÈ ckel parameter of � � 107 mÿ1.
Using the above-mentioned parameters and the

DLVO potential interaction functions in Section 2,
the potential interaction force Fp curves versus the
interparticle surface distance h for the stabilized
suspension systems are shown in Fig. 5(a). The
inset ®gure shows the dependences inside the
short surface distance region of h < 1�5 nm.
Hereby, �st(ZÿZ)=1.0 nm, F jkr

ad (ZÿZ)=
ÿ1.6�10ÿ9N, �st(AÿA)=0.7 nm, F jkr

ad (ZÿZ)=
ÿ1.95�10ÿ9N, �st(AÿZ)=0.35 nm and F jkr

ad

(AÿZ)=ÿ2.3�10ÿ9N can be found. The initial
state before casting is shown in Fig. 6(a). After a
casting time of t � 5�25ms, chain formation near

Fig. 5. The potential interaction force curves versus the
interparticle surface distance: (a) in the stabilized suspensions
with �Al2O3

=50mV, �ZrO2
=40mV; (b) in the ¯occulated

suspensions with �Al2O3
=�ZrO2

=0mV. �=107mÿ1 and
dAl2O3

=dZrO2
=0.45�m are assumed for both cases.



the bottom of sediment has been observed [see
Fig. 6(b)]. The particles reach the bottom and pile
up successively, so that the summation of all cen-
trifugal forces on each pile-up-particles can over-
come the maximal repulsive force (barrier) between
two electrostatic stabilized particles. Thus, the
particles will adhere to each other and build up
chains from the bottom. The chains will grow up if
the casting process continues. Schematically, the
centrifugal force of a ZrO2 particle with
d � 0�45 �m amounts to

fz � 3000 m� g � 5� 10ÿ12 N

which is 1/2±1/3 of the maximal repulsive forces
[see Fig. 5(a)]. This means that the particles on the
bottom will adhere to each other and build up
chains if there are more than three pile-up-parti-
cles. Away from the bottom of sediment, the
repulsive force dominates between the particles,
therefore there is no formation to be observed.
In the case of ¯occulated suspensions, i.e.

�Al2O3
� �ZrO2

� 0 mV, a di�erent packing
structure can be observed [Fig. 6(c)]. Fp curves

versus h are shown in Fig. 5(b). No electrostatic
repulsive forces between the particles are assumed,
therefore the particles agglomerate before they
have sedimented upon the bottom. Each of the
small agglomerates behave like big particles and
sediment much faster than the stabilized (or iso-
lated) particles. Thus, after a same casting time,
there are more particles in the ¯occulated suspen-
sions have been sedimented than in the stabilized
suspensions. An analysis of the mechanisms for
chain formation and agglomeration was given
elsewhere.7

8 Conclusions

In this work, the Derjaguin approximation and the
JKR theory have been successfully applied to solve
the transition problems from the DLVO long-
range interaction to the elastic solid-body contact
for the numerical simulations based on the discrete
element method (DEM). Meanwhile, this work
emphasizes the mathematical modelling and its
numerical realization of the singularity problem by
using the explicit interaction functions derived
from the continuum assumptions. Hereby, the
adhesion work (or energy) is assumed to be iden-
tical with the DLVO interaction energy at a short-
est reachable surface distance without external load
(i.e. at the primary minimum), and the JKR adhe-
sion force is assumed to be equivalent to the lower
limit of the DLVO interaction force. Besides, the
shortest surface distance without external load
approximates the thickness of Stern layer and is
dependent on the surface morphology described by
the interfacial energy or the adhesion work during
the surfaces in contact.
These physical models or assumptions describe

reasonable physical reality in the colloid science.
For example, two surfaces in aqueous solution
with higher electrolyte concentration result in a
lower adhesion work due to the higher covering
rate of the activer colloid surface through the elec-
trolytic ions in solution, a lower JKR adhesion
force and a thicker Stern layer or a longer shortest
surface distance without external load if they come
into contact. Within the Stern layer, the adhesion
force is assumed to be constant and induces the
elastic deformation, and according to eqn (2), the
interaction potential varies linearly. This assump-
tion of the linear dependence of the potential
interaction inside the Stern layer is certainly a sim-
pli®cation. However, it is a good assumption for
studying the particle packing behaviour of
submicron powders, because the thickness of the
Stern layer usually amounts to less than 1.5 nm
which is much smaller than the size of the

Fig. 6. Intermediate states of the DEM simulations during
centrifugal casting of Al2O3 (bright)/ZrO2 (dark) suspensions
with a centrifugal acceleration of 3000 g after a casting time of
t=5.25ms: (a) initial state; (b) stabilized suspension [corre-
sponds to Fig. 5(a)]; (c) ¯occulated suspension [corresponds to
Fig. 5(b)]. The dash lines on particles are the velocity vectors

of particles.



considered particles with d>300nm, and thus the
resulted packing structures will not be decisively
determined by the interactions inside this region,
but by the DLVO long-range interaction and the
adhesion. For the case of nanosized particles, the
interaction functions inside the Stern layer will
become important for the formation of the packing
structures.
The assumptions and formulations in this work

give us not only solutions for the numerical sigu-
larity problems between the DLVO long-range
interaction functions and the JKR theory for the
elastic solid-body contact but also reasonable phy-
sical interpretations. Furthermore, the results of
DEM simulation based on these assumptions and
formulations have shown this transition phenom-
ena correctly.
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